Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0297572, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630788

RESUMO

BACKGROUND: Currently, it is acknowledged that vitamin E, insulin sensitizers and anti-diabetic drugs are used to manage non-alcoholic fatty liver disease (NAFLD), however, these therapeutic interventions harbour adverse side effects. Pioglitazone, an anti-diabetic drug, is currently the most effective therapy to manage NAFLD. The use of natural medicines is widely embraced due to the lack of evidence of their negative side effects. Rooibos has been previously shown to decrease inflammation and oxidative stress in experimental models of diabetes, however, this is yet to be explored in a setting of NAFLD. This study was aimed at investigating the effects of an aspalathin-rich green rooibos extract (Afriplex GRTTM) against markers of hepatic oxidative stress, inflammation and apoptosis in an in vitro model of NAFLD. METHODS: Oleic acid [1 mM] was used to induce hepatic steatosis in C3A liver cells. Thereafter, the therapeutic effect of Afriplex GRTTM, with or without pioglitazone, was determined by assessing its impact on cell viability, changes in mitochondrial membrane potential, intracellular lipid accumulation and the expression of genes and proteins (ChREBP, SREBF1, FASN, IRS1, SOD2, Caspase-3, GSTZ1, IRS1 and TNF-α) that are associated with the development of NAFLD. RESULTS: Key findings showed that Afriplex GRTTM added to the medium alone or combined with pioglitazone, could effectively block hepatic lipid accumulation without inducing cytotoxicity in C3A liver cells exposed oleic acid. This positive outcome was consistent with effective regulation of genes involved in insulin signaling, as well as carbohydrate and lipid metabolism (IRS1, SREBF1 and ChREBP). Interestingly, in addition to reducing protein levels of an inflammatory marker (TNF-α), the Afriplex GRTTM could ameliorate oleic acid-induced hepatic steatotic damage by decreasing the protein expression of oxidative stress and apoptosis related markers such as GSTZ1 and caspase-3. CONCLUSION: Afriplex GRTTM reduced hepatic steatosis in oleic acid induced C3A liver cells by modulating SREBF1, ChREBP and IRS-1 gene expression. The extract may also play a role in alleviating inflammation by reducing TNF-α expression, suggesting that additional experiments are required for its development as a suitable therapeutic option against NAFLD. Importantly, further research is needed to explore its antioxidant role in this model.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Caspase 3/metabolismo , Ácido Oleico/farmacologia , Pioglitazona/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Inflamação/metabolismo , Insulina/metabolismo , Dieta Hiperlipídica , Glutationa Transferase/metabolismo
2.
Biochem Biophys Res Commun ; 680: 25-33, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37713959

RESUMO

Previously we reported that a high fat, high sugar (HFHS) diet induced adiposity, hyperinsulinaemia, hyperleptinaemia, hypertriglyceridaemia and increased liver mass in male Wistar rats. In the present study, the mechanisms underlying the increased liver mass were further elucidated by assessing hepatic lipid accumulation and the expression and methylation status of key metabolic genes using histology, quantitative real-time PCR and pyrosequencing, respectively. The HFHS diet induced hepatic steatosis, increased hepatic triglycerides (1.8-fold, p < 0.001), and increased the expression of sterol regulatory element-binding transcription factor 1 (Srebf1) (2.0-fold, p < 0.001) and peroxisome proliferator-activated receptor gamma (Pparg) (1.7-fold, p = 0.017) in the liver. The expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Pgc1a) was decreased (2.6-fold, p < 0.010), which was accompanied by hypermethylation (p = 0.018) of a conserved CpG site in the promoter of Pgc1a in HFHS fed rats compared to controls. In silico analysis identified putative binding sites for CCAAT/enhancer-binding protein beta (C/EBPß) and hepatocyte nuclear factor 1 (HNF1) within proximity to the hypermethylated CpG. As Pgc1a is a co-activator of several transcription factors regulating multiple metabolic pathways, hypermethylation of this conserved CpG site in the promoter of Pgc1a may be one possible mechanism contributing to the development of hepatic steatosis in response to a HFHS diet. However, further work is required to confirm the role of Pgc1a in steatosis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36992750

RESUMO

Rooibos (Aspalathus linearis), an indigenous South African plant and its major flavonoid, aspalathin, exhibited positive effects on glycemia and dyslipidemia in animal studies. Limited evidence exists on the effects of rooibos extract taken in combination with oral hypoglycemic and lipid-lowering medications. This study investigated the combined effects of a pharmaceutical grade aspalathin-rich green rooibos extract (GRT) with the sulfonylurea, glyburide, and atorvastatin in a type 2 diabetic (db/db) mouse model. Six-week-old male db/db mice and their nondiabetic lean db+ littermates were divided into 8 experimental groups (n=6/group). Db/db mice were treated orally with glyburide (5 mg/kg bodyweight), atorvastatin (80 mg/kg bodyweight) and GRT (100 mg/kg bodyweight) as mono- and combination therapies respectively, for 5 weeks. An intraperitoneal glucose tolerance test was conducted at 3 weeks of treatment. Serum was collected for lipid analyses and liver tissues for histological examination and gene expression. A significant increase in the fasting plasma glucose (FPG) of the db/db mice compared to their lean counterparts (from 7.98 ± 0.83 to 26.44 ± 1.84, p < 0.0001) was observed. Atorvastatin reduced cholesterol (from 4.00 ± 0.12 to 2.93 ± 0.13, p < 0.05) and triglyceride levels (from 2.77 ± 0.50 to 1.48 ± 0.23, p < 0.05). In db/db mice, the hypotriglyceridemic effect of atorvastatin was enhanced when combined with both GRT and glyburide (from 2.77 ± 0.50 to 1.73 ± 0.35, p = 0.0002). Glyburide reduced the severity and pattern of steatotic lipid droplet accumulation from a mediovesicular type across all lobular areas, whilst combining GRT with glyburide reduced the abundance and severity of lipid droplet accumulation in the centri- and mediolobular areas. The combination of GRT, glyburide and atorvastatin reduced the abundance and severity of lipid accumulation and the intensity score compared to the administered drugs alone. The addition of either GRT or glyburide in combination with atorvastatin had no effect on blood glucose or lipid profiles, but significantly reduced lipid droplet accumulation.

4.
PLoS One ; 16(5): e0251069, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33983968

RESUMO

Oral therapeutics used to treat type 2 diabetes and cardiovascular disease often fail to prevent the progression of disease and their comorbidities. Rooibos (Aspalathus linearis), an endemic South African plant used as an herbal tea, has demonstrated positive effects on glycemia and hypercholesterolemia. However, the treatment efficacy of rooibos extract in combination with conventional hypoglycemic and hypolipidemic medications on blood glucose and lipid profiles has not been established. This study aimed to investigate the effects of combining an aspalathin-rich green rooibos extract (Afriplex GRT™) with pioglitazone and atorvastatin, on blood glucose and lipid levels in obese diabetic (db/db) mice. Six-week-old male db/db mice and their nondiabetic lean littermate controls (db+) were divided into 8 experimental groups (n = 6/group). Db/db mice were treated daily either with pioglitazone (25 mg/kg), atorvastatin (80 mg/kg) and GRT (100 mg/kg), a combination of either drug with GRT or a combination of GRT-pioglitazone and atorvastatin for 5 weeks. Untreated vehicle controls were given dimethyl sulfoxide (0.1%) and phosphate buffered saline solution. At termination, serum and liver tissue were collected for lipid and gene expression analysis. Treatment with GRT, pioglitazone and atorvastatin combination effectively lowered fasting plasma glucose (FPG) levels in db/db mice (p = 0.02), whilst increasing body weight, liver weight, and reducing retroperitoneal fat weight. Atorvastatin monotherapy was effective at reducing cholesterol (from 4.00 ± 0.12 to 2.93 ± 0.13, p = 0.0003), LDL-C (from 0.58 ± 0.04 to 0.50 ± 0.00, p = 0.04), HDL-C (from 2.86 ± 0.05 to 2.50 ± 0.04, p = 0.0003) and TG (from 2.77 ± 0.50 to 1.48 ± 0.23, p = 0.04), compared to the untreated diabetic control. The hypotriglyceridemic effect of atorvastatin was enhanced when used in combination with both GRT and pioglitazone. The addition of pioglitazone to GRT significantly lowered FPG and TG. In db/db mice, Apoa1 was significantly downregulated in the liver, whilst Pparγ was significantly upregulated compared to their db+ counterparts. GRT monotherapy downregulated Apoa1 expression (p = 0.02). Atorvastatin combined with GRT significantly downregulated mRNA expression of Apoa1 (p = 0.03), whilst upregulating the expression of Pparγ (p = 0.03), Pparα (p = 0.002), Srebp1 (p = 0.002), and Fasn (p = 0.04). The GRT-pioglitazone-atorvastatin combination therapy downregulated Apoa1 (p = 0.006), whilst upregulating Fasn (p = 0.005), Pparα (p = 0.041), and Srebp1 (p = 0.03). Natural products can improve the efficacy of current drugs to prevent diabetes-associated complications. GRT in combination with pioglitazone enhanced the reduction of FPG, whilst the addition of atorvastatin to the combination, significantly lowered triglyceride levels. However, when GRT was used in combination with atorvastatin only cholesterol levels were affected. Although these results confirm both glucose- and lipoprotein-lowering biological effects of GRT in combination with pioglitazone and atorvastatin, increased expression of genes involved in lipogenesis, cholesterol, and fatty acid transport, ß-oxidation, and synthesis and storage of fatty acids, may exacerbate the hepatotoxic effects of atorvastatin.


Assuntos
Atorvastatina/farmacologia , Chalconas/farmacologia , Pioglitazona/farmacologia , Animais , Aspalathus/química , Aspalathus/metabolismo , Atorvastatina/metabolismo , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Quimioterapia Combinada/métodos , Glucose/metabolismo , Hiperlipidemias/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Hipolipemiantes , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos , Fitoterapia , Pioglitazona/metabolismo , Extratos Vegetais/farmacologia
5.
Adipocyte ; 10(1): 108-118, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33570456

RESUMO

Increased visceral adipose tissue (VAT) is associated with metabolic dysfunction, while subcutaneous adipose tissue (SAT) is considered protective. The mechanisms underlying these differences are not fully elucidated. This study aimed to investigate molecular differences in VAT and SAT of male Wistar rats fed a cafeteria diet (CD) or a standard rodent diet (STD) for three months. The expression of fatty acid metabolism genes was analysed by quantitative real-time PCR. Global and gene-specific DNA methylation was quantified using the Imprint® Methylated DNA Quantification Kit and pyrosequencing, respectively. Bodyweight, retroperitoneal fat mass, insulin resistance, leptin and triglyceride concentrations and adipocyte hypertrophy were higher in CD- compared to STD-fed rats. The expression of solute carrier family 27 member 3 (Slc27a3), a fatty acid transporter, was 9.6-fold higher in VAT and 6.3-fold lower in SAT of CD- versus STD-fed rats. Taqman probes confirmed increased Slc27a3 expression, while pyrosequencing showed Slc27a3 hypomethylation in VAT of CD- compared to STD-fed rats. The CD decreased global methylation in both VAT and SAT, although no depot differences were observed. Dysregulated fatty acid influx in VAT, in response to a CD, provides insight into the mechanisms underlying depot-differences in adipose tissue expansion during obesity and metabolic disease. Abbreviations: CD: cafeteria diet; E2F1: E2F Transcription Factor 1; EMSA: electrophoretic mobility shift assay; EGFR: epidermal growth factor receptor; GCF: GC-Rich Sequence DNA-Binding Factor; HOMA-IR: Homeostasis model for insulin resistance; NKX2-1: NK2 homeobox 1; PCR: Polymerase chain reaction; qRT-PCR: quantitative real-time PCR; RF: retroperitoneal fat; SAT: subcutaneous adipose tissue; Slc27a3: solute carrier family 27 member 3; STD: standard diet; TNFα: tumour necrosis factor alpha; TTS: transcriptional start site; T2D: Type 2 Diabetes; VAT: visceral adipose tissue; WT1 I: Wilms' tumour protein 1.


Assuntos
Metilação de DNA/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Gordura Subcutânea/metabolismo , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Diabetes Mellitus Tipo 2/metabolismo , Dieta , Dieta Hiperlipídica/efeitos adversos , Proteínas de Transporte de Ácido Graxo/efeitos dos fármacos , Proteínas de Transporte de Ácido Graxo/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Gordura Intra-Abdominal/fisiologia , Leptina/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Doenças Metabólicas/fisiopatologia , Obesidade/metabolismo , Ratos , Ratos Wistar , Gordura Subcutânea/fisiologia
6.
Front Pharmacol ; 10: 1243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708777

RESUMO

An aspalathin-rich green rooibos extract (Afriplex GRT™) has demonstrated anti-diabetic and hypolipidemic properties, while also moderately inhibiting CYP3A4 activity, suggesting a potential for herb-drug interaction. The present study, therefore, evaluated the effects of orally administered GRT on the pharmacokinetics of atorvastatin and metformin in Wistar rats. Wistar rats were orally treated with GRT (50 mg/kg BW), atorvastatin (40 mg/kg BW) or metformin (150 mg/kg BW) alone or 50 mg/kg BW GRT in combination with 40 mg/kg BW atorvastatin or 150 mg/kg BW metformin. Blood samples were collected at 0, 10, and 30 min and 1, 2, 4, 6, and 8 h and plasma samples obtained for Liquid chromatography-mass spectrometry (LC-MS/MS) analyses. Non-compartment and two-compartment pharmacokinetic parameters of atorvastatin and metformin in the presence or absence of GRT were determined by PKSolver version 2.0 software. Membrane transporter proteins, ATP-binding cassette sub-family C member 2 (Abcc2), solute carrier organic anion transporter family, member 1b2 (Slco1b2), ATP-binding cassette, sub-family B (MDR/TAP), member 1A (Abcb1a), and organic cation transporter 1 (Oct1) mRNA expression were determined using real-time PCR expression data normalized to ß-actin and hypoxanthine-guanine phosphoribosyltransferase (HPRT), respectively. Co-administration of GRT with atorvastatin substantially increased the maximum plasma concentration (Cmax) and area of the plasma concentration-time curve (AUC0-8) of atorvastatin by 5.8-fold (p = 0.03) and 5.9-fold (p = 0.02), respectively. GRT had no effect on the plasma levels of metformin. GRT increased Abcc2 expression and metformin downregulated Abcb1a expression while the combination of GRT with atorvastatin or metformin did not significantly alter the expression of Slco1b1 or Oct1 did not significantly alter the expression of Sclo1b2 or Oct1. Co-administration of GRT with atorvastatin in rats may lead to higher plasma concentrations and, therefore, to an increase of the exposure to atorvastatin.

7.
Molecules ; 21(11)2016 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-27845750

RESUMO

Rooibos extract, due to its glucose and lipid lowering effects, has potential as a nutraceutical for improvement of metabolic dysfunction. Potential herb-drug interactions as a result of the use of natural products are of increasing concern. Cytochrome P450 enzymes, CYP2C8, CYP2C9, and CYP3A4, are important in the metabolism of hypoglycemic drugs, such as thiazolidinediones (TZDs) and sulfonylureas, and hypocholesterolemic drugs, such as atorvastatin. This study investigated the effects of rooibos extracts, prepared from "unfermented" and "fermented" rooibos plant material and two of the major bioactive compounds, Z-2-(ß-d-glucopyranosyloxy)-3-phenylpropenoic acid (PPAG) and aspalathin (ASP), on Vivid® recombinant CYP450 enzymes. Unfermented (GRT) and fermented (FRE) rooibos extracts inhibited the activity of CYP2C8 (7.69 ± 8.85 µg/mL and 8.93 ± 8.88 µg/mL, respectively) and CYP3A4 (31.33 ± 4.69 µg/mL and 51.44 ± 4.31 µg/mL, respectively) based on their respective IC50 concentrations. Both extracts dose- and time-dependently inhibited CYP2C8 activity, but only time-dependently inhibited CYP2C9. CYP3A4 showed concentration-dependent inhibition by ASP, GRT, and FRE at 25, 50, and 100 µg/mL concentrations. ASP, GRT, and FRE time-dependently inhibited CYP3A4 activity with GRT and FRE showing a more potent time-dependent inhibition, comparable to erythromycin. These findings suggest that herb-drug interactions may occur when nutraceuticals containing rooibos extracts are co-administered with hypoglycemic drugs such as TZDs, sulfonylureas, and dyslipidemic drug, atorvastatin.


Assuntos
Aspalathus/química , Sistema Enzimático do Citocromo P-450/metabolismo , Hipolipemiantes/farmacologia , Extratos Vegetais/farmacologia , Chalconas/farmacologia , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Ervas-Drogas , Hipoglicemiantes/farmacologia , Fenilpropionatos/farmacologia , Extratos Vegetais/química
8.
J. physiol. biochem ; 72(1): 25-32, mar. 2016. tab, graf
Artigo em Inglês | IBECS | ID: ibc-168204

RESUMO

Obesity, a complex metabolic disorder, is characterized by mitochondrial dysfunction and oxidative stress. Increased expression of uncoupling protein 2 (UCP2) during obesity is an adaptive response to suppress the production of reactive oxygen species. The aims of this study were to compare the expression of UCP2 in diet-induced obese Wistar rats that differed according to age and their severity of obesity, and to compare UCP2 expression in the liver and muscle of these rats. UCP2 messenger RNA and protein expression was increased 4.6-fold (p < 0.0001) and 3.0-fold (p < 0.05), respectively, in the liver of the older and heavier rats. In contrast, UCP2 expression was decreased twofold (p < 0.005) in the muscle of these rats, while UCP3 messenger RNA (mRNA) was increased twofold (p < 0.01). Peroxisome proliferator-activated receptor alpha (PPARα) was similarly increased (3.0-fold, p < 0.05) in the liver of the older and more severe obese rats. Total protein content was increased (2.3-fold, p < 0.0001), while 5' adenosine monophosphate-activated protein kinase (AMPK) activity was decreased (1.3-fold, p = 0.05) in the liver of the older, heavier rats. No difference in total protein content and AMPK expression was observed in the muscle of these rats. This study showed that the expression of UCP2 varies according to age and the severity of obesity and supports the widely held notion that increased UCP2 expression is an adaptive response to increased fatty acid β-oxidation and reactive oxygen species production that occurs during obesity. An understanding of metabolic adaptation is imperative to gain insight into the underlying causes of disease, thus facilitating intervention strategies to combat disease progression (AU)


No disponible


Assuntos
Animais , Masculino , Ratos , Obesidade/metabolismo , Fatores Etários , Proteínas Mitocondriais/metabolismo , Canais Iônicos/metabolismo , Ratos Wistar , Proteína Desacopladora 2
9.
J Physiol Biochem ; 72(1): 25-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26621256

RESUMO

Obesity, a complex metabolic disorder, is characterized by mitochondrial dysfunction and oxidative stress. Increased expression of uncoupling protein 2 (UCP2) during obesity is an adaptive response to suppress the production of reactive oxygen species. The aims of this study were to compare the expression of UCP2 in diet-induced obese Wistar rats that differed according to age and their severity of obesity, and to compare UCP2 expression in the liver and muscle of these rats. UCP2 messenger RNA and protein expression was increased 4.6-fold (p < 0.0001) and 3.0-fold (p < 0.05), respectively, in the liver of the older and heavier rats. In contrast, UCP2 expression was decreased twofold (p < 0.005) in the muscle of these rats, while UCP3 messenger RNA (mRNA) was increased twofold (p < 0.01). Peroxisome proliferator-activated receptor alpha (PPARα) was similarly increased (3.0-fold, p < 0.05) in the liver of the older and more severe obese rats. Total protein content was increased (2.3-fold, p < 0.0001), while 5' adenosine monophosphate-activated protein kinase (AMPK) activity was decreased (1.3-fold, p = 0.05) in the liver of the older, heavier rats. No difference in total protein content and AMPK expression was observed in the muscle of these rats. This study showed that the expression of UCP2 varies according to age and the severity of obesity and supports the widely held notion that increased UCP2 expression is an adaptive response to increased fatty acid ß-oxidation and reactive oxygen species production that occurs during obesity. An understanding of metabolic adaptation is imperative to gain insight into the underlying causes of disease, thus facilitating intervention strategies to combat disease progression.


Assuntos
Fatores Etários , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Obesidade/metabolismo , Animais , Masculino , Ratos , Ratos Wistar , Proteína Desacopladora 2
10.
PLoS One ; 10(10): e0140148, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26452142

RESUMO

One week of treatment with EGF and gastrin (EGF/G) was shown to restore normoglycemia and to induce islet regeneration in mice treated with the diabetogenic agent alloxan. The mechanisms underlying this regeneration are not fully understood. We performed genetic lineage tracing experiments to evaluate the contribution of beta cell neogenesis in this model. One day after alloxan administration, mice received EGF/G treatment for one week. The treatment could not prevent the initial alloxan-induced beta cell mass destruction, however it did reverse glycemia to control levels within one day, suggesting improved peripheral glucose uptake. In vitro experiments with C2C12 cell line showed that EGF could stimulate glucose uptake with an efficacy comparable to that of insulin. Subsequently, EGF/G treatment stimulated a 3-fold increase in beta cell mass, which was partially driven by neogenesis and beta cell proliferation as assessed by beta cell lineage tracing and BrdU-labeling experiments, respectively. Acinar cell lineage tracing failed to show an important contribution of acinar cells to the newly formed beta cells. No appearance of transitional cells co-expressing insulin and glucagon, a hallmark for alpha-to-beta cell conversion, was found, suggesting that alpha cells did not significantly contribute to the regeneration. An important fraction of the beta cells significantly lost insulin positivity after alloxan administration, which was restored to normal after one week of EGF/G treatment. Alloxan-only mice showed more pronounced beta cell neogenesis and proliferation, even though beta cell mass remained significantly depleted, suggesting ongoing beta cell death in that group. After one week, macrophage infiltration was significantly reduced in EGF/G-treated group compared to the alloxan-only group. Our results suggest that EGF/G-induced beta cell regeneration in alloxan-diabetic mice is driven by beta cell neogenesis, proliferation and recovery of insulin. The glucose-lowering effect of the treatment might play an important role in the regeneration process.


Assuntos
Diabetes Mellitus Experimental/patologia , Fator de Crescimento Epidérmico/farmacologia , Gastrinas/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Animais , Transporte Biológico/efeitos dos fármacos , Glicemia/metabolismo , Contagem de Células , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Músculos/efeitos dos fármacos , Músculos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...